Interestingness Measurements

- **Objective** measures
 - Two popular measurements:
 - support
 - confidence

- **Subjective** measures [Silberschatz & Tuzhilin, KDD95]
 - A rule (pattern) is interesting if it is
 - unexpected (surprising to the user) and/or
 - actionable (the user can do something with it)

Criticism to Support and Confidence

- Example 1 [Aggarwal & Yu, PODS98]
 - Among 5000 students
 - 3000 play basketball (=60%)
 - 3750 eat cereal (=75%)
 - 2000 both play basketball and eat cereal (=40%)
 - Rule **play basketball ⇒ eat cereal** [40%, 66.7%] is misleading because the overall percentage of students eating cereal is 75% which is higher than 66.7%
 - Rule **play basketball ⇒ not eat cereal** [20%, 33.3%] is far more accurate, although with lower support and confidence
 - Observation: **play basketball** and **eat cereal** are negatively correlated
Interestingness of Association Rules

- Goal: Delete misleading association rules
- Condition for a rule $A \Rightarrow B$
 $$\frac{P(A \cup B)}{P(A)} > P(B) + d \quad \text{for a suitable threshold } d > 0$$

- Measure for the interestingness of a rule
 $$\frac{P(A \cup B)}{P(A)} - P(B)$$
 - The larger the value, the more interesting the relation between A and B, expressed by the rule.
 - Other measures: correlation between A and $B \Rightarrow \frac{P(A \cup B)}{P(A)P(B)}$

Criticism to Support and Confidence: Correlation of Itemsets

- Example 2

<table>
<thead>
<tr>
<th>Rule</th>
<th>Support</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>$X \Rightarrow Y$</td>
<td>25%</td>
<td>50%</td>
</tr>
<tr>
<td>$X \Rightarrow Z$</td>
<td>37.50%</td>
<td>75%</td>
</tr>
</tbody>
</table>

- X and Y: positively correlated
- X and Z: negatively related
- support and confidence of $X \Rightarrow Z$ dominates
- We need a measure of dependent or correlated events
 $$corr_{A,B} = \frac{P(A \cup B)}{P(A)P(B)}$$
 - $P(B|A)/P(B)$ is also called the lift of rule $A \Rightarrow B$
Other Interestingness Measures: Interest

- **Interest (correlation, lift):** \(\frac{P(A \cup B)}{P(A)P(B)} \)

- taking both \(P(A) \) and \(P(B) \) in consideration
- Correlation equals 1, i.e. \(P(A \cup B) = P(B) \cdot P(A) \), if \(A \) and \(B \) are independent events
- \(A \) and \(B \) negatively correlated, if the value is less than 1; otherwise \(A \) and \(B \) positively correlated

<table>
<thead>
<tr>
<th>Itemset</th>
<th>Support</th>
<th>Interest</th>
</tr>
</thead>
<tbody>
<tr>
<td>X,Y</td>
<td>25%</td>
<td>2</td>
</tr>
<tr>
<td>X,Z</td>
<td>37.50%</td>
<td>0.9</td>
</tr>
<tr>
<td>Y,Z</td>
<td>12.50%</td>
<td>0.57</td>
</tr>
</tbody>
</table>

Chapter 8: Mining Association Rules

- **Introduction**
 - Transaction databases, market basket data analysis
- **Simple Association Rules**
 - Basic notions, apriori algorithm, hash trees, interestingness
- **Hierarchical Association Rules**
 - Motivation, notions, algorithms, interestingness
- **Quantitative Association Rules**
 - Motivation, basic idea, partitioning numerical attributes, adaptation of apriori algorithm, interestingness
- **Constraint-based Association Mining**
- **Summary**
Hierarchical Association Rules: Motivation

- Problem of association rules in plain itemsets
 - *High minsup*: apriori finds only few rules
 - *Low minsup*: apriori finds unmanageably many rules
- Exploit item taxonomies (generalizations, *is-a* hierarchies) which exist in many applications

![Hierarchical Itemset Diagram]

- Task: find association rules between generalized items
- Support for sets of item types (e.g., product groups) is higher than support for sets of individual items

Hierarchical Association Rules: Motivating Example

- Examples
 - jeans \Rightarrow boots
 - jackets \Rightarrow boots
 - outerwear \Rightarrow boots
 \[
 \text{Support} < \text{minsup}
 \]

- Characteristics
 - Support(“outerwear \Rightarrow boots”) is not necessarily equal to the sum support(“jackets \Rightarrow boots”) + support(“jeans \Rightarrow boots”)
 - If the support of rule “outerwear \Rightarrow boots” exceeds minsup, then the support of rule “clothes \Rightarrow boots” does, too
Mining Multi-Level Associations

- Example generalization hierarchy:

- A top-down, progressive deepening approach:
 - First find high-level strong rules:
 - \(\text{milk} \rightarrow \text{bread} \ [20\%, \ 60\%] \).
 - Then find their lower-level “weaker” rules:
 - \(1.5\% \text{ milk} \rightarrow \text{wheat bread} \ [6\%, \ 50\%] \).

- Variations at mining multiple-level association rules.
 - Level-crossed association rules:
 - \(1.5\% \text{ milk} \rightarrow \text{Wonder wheat bread} \)
 - Association rules with multiple, alternative hierarchies:
 - \(1.5\% \text{ milk} \rightarrow \text{Wonder bread} \)

Hierarchical Association Rules: Basic Notions

- [Srikant & Agrawal 1995]

- Let \(U = \{i_1, \ldots, i_m\} \) be a universe of literals called items
- Let \(h \) be a directed acyclic graph defined as follows:
 - The universe of literals \(U \) forms the set of vertices in \(h \)
 - A pair \((i, j)\) forms an edge in \(h \) if \(i \) is a generalization of \(j \)
 - \(i \) is called parent or direct predecessor of \(j \)
 - \(j \) is called a child or a direct successor of \(i \)
 - \(x' \) is an ancestor of \(x \) and, thus, \(x \) is a descendant of \(x' \) wrt. \(h \), if there is a path from \(x' \) to \(x \) in \(h \)
 - A set of items \(z' \) is called an ancestor of a set of items \(z \) if at least one item in \(z' \) is an ancestor of an item in \(z \).
Hierarchical Association Rules: Basic Notions (2)

- Let \(D \) be a set of transactions \(T \) with \(T \subseteq U \)
 - Typically, transactions \(T \) in \(D \) only contain items from the leaves of graph \(h \)
- A transaction \(T \) supports an item \(i \in U \) if \(i \) or any ancestor of \(i \) is contained in \(T \)
- A transaction \(T \) supports a set \(X \subseteq U \) of items if \(T \) supports each item in \(X \)

- Support of a set \(X \subseteq U \) of items in \(D \):
 - Percentage of transactions in \(D \) that support \(X \)

Hierarchical Association Rules: Basic Notions (3)

- Hierarchical association rule
 - \(X \Rightarrow Y \) with \(X \subseteq U, Y \subseteq U, X \cap Y = \emptyset \)
 - No item in \(Y \) is ancestor of an item in \(X \) wrt. \(h \)
- Support of a hierarchical association rule \(X \Rightarrow Y \) in \(D \):
 - Support of the set \(X \cup Y \) in \(D \)
- Confidence of a hierarchical association rule \(X \Rightarrow Y \) in \(D \):
 - Percentage of transactions that support \(Y \) among the subset of transactions that support \(X \)
Hierarchical Association Rules: Example

Support of \{clothes\}: 4 of 6 = 67%
Support of \{clothes, boots\}: 2 of 6 = 33%

"shoes ⇒ clothes": support 33%, confidence 50%
"boots ⇒ clothes": support 33%, confidence 100%

<table>
<thead>
<tr>
<th>transaction id</th>
<th>items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>shirt</td>
</tr>
<tr>
<td>2</td>
<td>jacket, boots</td>
</tr>
<tr>
<td>3</td>
<td>jeans, boots</td>
</tr>
<tr>
<td>4</td>
<td>sports shoes</td>
</tr>
<tr>
<td>5</td>
<td>sports shoes</td>
</tr>
<tr>
<td>6</td>
<td>jacket</td>
</tr>
</tbody>
</table>

Determination of Frequent Itemsets: Basic Algorithm for Hierarchical Rules

Idea: Extend the transactions in the database by all the ancestors of the items contained

Method:
- For all transactions \(t \) in the database
 - Create an empty new transaction \(t' \)
 - For each item \(i \) in \(t \), insert \(i \) and all its ancestors wrt. \(h \) in \(t' \)
 - Avoid inserting duplicates
- Based on the new transactions \(t' \), find frequent itemsets for simple association rules (e.g., by using the apriori algorithm)
Determination of Frequent Itemsets: Optimization of Basic Algorithm

- Precomputation of ancestors
 - Additional data structure that holds the association of each item to the list of its ancestors: \(\text{item} \rightarrow \text{list of successors} \)
 - supports a more efficient access to the ancestors of an item

- Filtering of new ancestors
 - Add only ancestors to a transaction which occur in an element of the candidate set \(C_k \) of the current iteration

Example
- \(C_k = \{\{\text{clothes, shoes}\}\} \)
- Substitute „jacketABC“ by „clothes“

Algorithm \textit{Cumulate}: Exclude redundant itemsets

- Let \(X \) be a \(k \)-itemset, \(i \) an item and \(i' \) an ancestor of \(i \)
- \(X = \{i, i', \ldots\} \)
- Support of \(X - \{i'\} = \text{support of } X \)
- When generating candidates, \(X \) can be excluded
- \(k \)-itemsets that contain an item \(i \) and an ancestor \(i' \) of \(i \) as well are not counted
Multi-level Association: Redundancy Filtering

- Some rules may be redundant due to “ancestor” relationships between items.
- Example
 - milk \Rightarrow wheat bread \[\text{support} = 8\%, \text{confidence} = 70\%\]
 - 2\% milk \Rightarrow wheat bread \[\text{support} = 2\%, \text{confidence} = 72\%\]

- We say the first rule is an ancestor of the second rule.
- A rule is redundant if its support is close to the “expected” value, based on the rule’s ancestor.

Multi-Level Mining: Progressive Deepening

- A top-down, progressive deepening approach:
 - First mine high-level frequent items:
 - milk (15\%), bread (10\%)
 - Then mine their lower-level “weaker” frequent itemsets:
 - 1.5\% milk (5\%), wheat bread (4\%)

- Different min_support threshold across multi-levels lead to different algorithms:
 - If adopting the same min_support across multi-levels
 - toss t if any of t’s ancestors is infrequent.
 - If adopting reduced min_support at lower levels
 - then examine only those descendents whose ancestor’s support is frequent/non-negligible.
Progressive Refinement of Data Mining Quality

- Why progressive refinement?
 - Mining operator can be expensive or cheap, fine or rough
- Superset coverage property:
 - Preserve all the positive answers—allow a positive false test but not a false negative test.
- Two- or multi-step mining:
 - First apply rough/cheap operator (superset coverage)
 - Then apply expensive algorithm on a substantially reduced candidate set (Koperski & Han, SSD’95).

Determination of Frequent Itemsets: Stratification

- Alternative to basic algorithm (i.e., to apriori algorithm)
- Stratification: build layers from the sets of itemsets

- Basic observation
 - If itemset \(X' \) does not have minimum support, and \(X' \) is an ancestor of \(X \), then \(X \) does not have minimum support, too.

- Method
 - For a given \(k \), do not count all \(k \)-itemsets simultaneously
 - Instead, count the more general itemsets first, and count the more specialized itemsets only when required
Determination of Frequent Itemsets: Stratification (2)

Example

- \(C_k = \{\{\text{clothes, shoes}\}, \{\text{outerwear, shoes}\}, \{\text{jackets, shoes}\}\} \)
- First, count the support for \{clothes, shoes\}
- Only if support to small, count the support for \{outerwear, shoes\}

Notions

- **Depth** of an itemset
 - For itemsets \(X \) from a candidate set \(C_k \) without direct ancestors in \(C_k \): \(\text{depth}(X) = 0 \)
 - For all other itemsets \(X \) in \(C_k \):
 - \(\text{depth}(X) = 1 + \max \{\text{depth}(X'), X' \in C_k \text{ is a parent of } X\} \)
- \((C_k^n)\): set of itemsets of depth \(n \) from \(C_k \) where \(0 \leq n \leq \text{maximum depth } t \)

Determination of Frequent Itemsets: Algorithm Stratify

Method

- Count the itemsets from \(C_k^0 \)
- Remove all descendants of elements from \((C_k^0)\) that do not have minimum support
 - Count the remaining elements in \((C_k^1) \)
 - ...

Trade-off between number of itemsets for which support is counted simultaneously and number of database scans

- If \(|C_k^n|\) is small, then count candidates of depth \((n, n+1, ..., t)\) at once
Determination of Frequent Itemsets: Stratification – Problems

- Problem of algorithm Stratify
 - If many itemsets with small depth share the minimum support, only few itemsets of a higher depth are excluded

- Improvements of algorithm Stratify
 - Estimate the support of all itemsets in C_k by using a sample
 - Let C_k' be the set of all itemsets for which the sample suggests that all or at least all their ancestors in C_k share the minimum support
 - Determine the actual support of the itemsets in C_k' by a single database scan
 - Remove all descendants of elements in C_k' that have a support below the minimum support from the set $C_k'' = C_k - C_k'$
 - Determine the support of the remaining itemsets in C_k'' in a second database scan

Determination of Frequent Itemsets: Stratification – Experiments

- Test data
 - Supermarket data
 - 548,000 items; item hierarchy with 4 levels; 1.5M transactions
 - Department store data
 - 228,000 items; item hierarchy with 7 levels; 570,000 transactions

- Results
 - Optimizations of algorithms cumulate and stratify can be combined
 - *cumulate* optimizations yield a strong efficiency improvement
 - *Stratification* yields a small additional benefit only
Progressive Refinement Mining of Spatial Association Rules

- Hierarchy of spatial relationship:
 - “g_close_to”: near_by, touch, intersect, contain, etc.
 - First search for rough relationship and then refine it.

- Two-step mining of spatial association:
 - Step 1: rough spatial computation (as a filter)
 - Using MBR or R-tree for rough estimation.
 - Step2: Detailed spatial algorithm (as refinement)
 - Apply only to those objects which have passed the rough spatial association test (no less than min_support)

Interestingness of Hierarchical Association Rules – Notions

- Rule $X' \Rightarrow Y'$ is an ancestor of rule $X \Rightarrow Y$ if:
 - Itemset X' is an ancestor of itemset X or itemset Y' is an ancestor of itemset Y

- Rule $X' \Rightarrow Y'$ is a direct ancestor of rule $X \Rightarrow Y$ in a set of rules if:
 - Rule $X' \Rightarrow Y'$ is an ancestor of rule $X \Rightarrow Y$, and
 - There is no rule $X'' \Rightarrow Y''$ such that $X'' \Rightarrow Y''$ is an ancestor of $X \Rightarrow Y$ and $X' \Rightarrow Y'$ is an ancestor of $X'' \Rightarrow Y''$

- A hierarchical association rule $X \Rightarrow Y$ is called R-interesting if:
 - There are no direct ancestors of $X \Rightarrow Y$ or
 - Actual support is larger than R times the expected support or
 - Actual confidence is larger than R times the expected confidence
Interestingness of Hierarchical Association Rules – Example

Example
- Let $R = 2$

<table>
<thead>
<tr>
<th>Item</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>clothes</td>
<td>20</td>
</tr>
<tr>
<td>outerwear</td>
<td>10</td>
</tr>
<tr>
<td>jackets</td>
<td>4</td>
</tr>
</tbody>
</table>

- **No.** | **rule** | **support** | **R-interesting?**
- 1 | clothes \Rightarrow shoes | 10 | yes: no ancestors
- 2 | outerwear \Rightarrow shoes | 9 | yes: Support $>> R^*$ expected support (wrt. rule 1)
- 3 | jackets \Rightarrow shoes | 4 | no: Support $< R^*$ expected support (wrt. rule 2)

Multi-level Association: Uniform Support vs. Reduced Support

- **Uniform Support:** the same minimum support for all levels
 - Benefit for efficiency: One minimum support threshold
 - No need to examine itemsets containing any item whose ancestors do not have minimum support.
 - Limited effectiveness: Lower level items do not occur as frequently. Look at support threshold minsup, if ...
 - Minsup too high \Rightarrow miss low level associations
 - Minsup too low \Rightarrow generate too many high level associations

- **Reduced Support:** reduced minimum support at lower levels
 - There are four search strategies:
 - Level-by-level independent
 - Level-cross filtering by k-itemset
 - Level-cross filtering by single item
 - Controlled level-cross filtering by single item
Hierarchical Association Rules – How to Choose Minimum Support?

- **Uniform Support**
 - outerwear
 - support = 10%
 - jackets
 - support = 6%
 - jeans
 - support = 4%
 - minsup = 5%

- **Reduced Support** (Variable Support)
 - outerwear
 - support = 10%
 - jackets
 - support = 6%
 - jeans
 - support = 4%
 - minsup = 3%

Multi-Dimensional Association: Concepts

- Single-dimensional rules:
 - buys(X, “milk”) ⇒ buys(X, “bread”)

- Multi-dimensional rules: ≥ 2 dimensions or predicates
 - Inter-dimension association rules (**no repeated predicates**)
 - age(X,”19-25”) ∧ occupation(X,”student”) ⇒ buys(X,”coke”)
 - Hybrid-dimension association rules (**repeated predicates**)
 - age(X,”19-25”) ∧ buys(X,”popcorn”) ⇒ buys(X, “coke”)

- Categorical Attributes
 - finite number of possible values, no ordering among values

- Quantitative Attributes
 - numeric, implicit ordering among values
Techniques for Mining Multi-Dimensional Associations

- Search for frequent k-predicate set:
 - Example: \{age, occupation, buys\} is a 3-predicate set.
 - Techniques can be categorized by how age are treated.

1. Using static discretization of quantitative attributes
 - Quantitative attributes are statically discretized by using predefined concept hierarchies.

2. Quantitative association rules
 - Quantitative attributes are dynamically discretized into “bins” based on the distribution of the data.

3. Distance-based association rules
 - This is a dynamic discretization process that considers the distance between data points.

Chapter 8: Mining Association Rules

- Introduction
 - Transaction databases, market basket data analysis

- Simple Association Rules
 - Basic notions, apriori algorithm, hash trees, interestingness

- Hierarchical Association Rules
 - Motivation, notions, algorithms, interestingness

- Quantitative Association Rules
 - Motivation, basic idea, partitioning numerical attributes, adaptation of apriori algorithm, interestingness

- Constraint-based Association Mining

- Summary